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Abstract We revisit the one-dimensional Burgers equation in the inviscid limit for white-
noise initial velocity. We derive the probability distributions of velocity and Lagrangian
increments, measured on intervals of any length x. This also gives the velocity structure
functions. Next, for the case where the initial density is uniform, we obtain the distribution
of the density, over any scale x, and we derive the density two-point correlation and power
spectrum. Finally, we consider the Lagrangian displacement field and we derive the distri-
bution of increments of the Lagrangian map. We check that this gives back the well-known
mass function of shocks. For all distributions we describe the limiting scaling functions that
are obtained in the large-scale and small-scale limits. We also discuss how these results gen-
eralize to other initial conditions, or to higher dimensions, and make the connection with a
heuristic multifractal formalism. We note that the formation of point-like masses generically
leads to a universal small-scale scaling for the density distribution, which is known as the
“stable-clustering ansatz” in the cosmological context (where the Burgers dynamics is also
known as the “adhesion model”).

Keywords Inviscid Burgers equation · Turbulence · Cosmology: large-scale structure
of the universe

1 Introduction

The Burgers equation [7], which describes the advection of a velocity field by itself, with
a nonzero viscosity, is a very popular nonlinear evolution equation that appears in many
physical problems, see [5] for a recent review. It was first introduced as a simplified model of
fluid turbulence, as it shares the same hydrodynamical (advective) nonlinearity and several
conservation laws with the Navier-Stokes equation. Even though it was shown later on by
[19] and [8] that it can be explicitly integrated and lacks the chaotic character associated
with actual turbulence, it still retains much interest for hydrodynamical studies, particularly
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as a useful benchmark for approximation schemes [11]. On the other hand, it has appeared
in many other physical situations, such as the propagation of nonlinear acoustic waves in
nondispersive media [16], the study of disordered systems and pinned manifolds [22], or the
formation of large-scale structures in cosmology [17, 35]. There, in the limit of vanishing
viscosity, it is known as the “adhesion model” and it provides a good description of the
large-scale filamentary structure of the cosmic web [23]. In this context, one is interested in
the statistical properties of the dynamics, starting with random Gaussian initial conditions
[18, 20] (i.e. “decaying Burgers turbulence” in the hydrodynamical context). Moreover, in
addition to the velocity field, one is also interested in the properties of the density field
generated by this dynamics, starting with an initial uniform density.

This problem has led to many studies in the inviscid limit, focusing on power-law ini-
tial spectra (fractional Brownian motion), E0(k) ∝ kn, especially for the two peculiar cases
of white-noise initial velocity (n = 0) [7, 12, 20, 28] or Brownian motion initial velocity
(n = −2) [6, 28, 29, 34]. The initial velocity fluctuations are dominated by short wavelengths
in the former case and by large wavelengths in the latter case. Therefore, they provide two
simple examples for two more general classes of random initial conditions, associated with
−1 < n < 1 and −3 < n < −1 [16, 18], which show both common and different significant
behaviors. For instance, the integral scale of turbulence, L(t), and the tail of the shock mass
function, scale with n as L(t) ∼ t2/(n+3) and ln[n(> m)] ∼ −mn+3 over the whole range
−3 < n < 1 [18, 24, 25, 28], even though shocks are dense for −3 < n < −1 but isolated
for −1 < n < 1 [28]. Then, the specific advantage of these two cases, n = 0 and n = −2, is
that in both cases the initial velocity field is built from a white-noise stochastic field (either
directly or through one integration), which gives rise to Markovian processes and allows to
derive many explicit analytical results.

In parallel with a study of the Brownian case in [34], we revisit in this article the white-
noise case, taking advantage of the results obtained in [12]. In particular, we pay attention
to issues that arise in the hydrodynamical context (velocity structure functions, Lagrangian
displacement field) as well as in the cosmological context (statistics of the density field).
Thus, the main goal of this article is to provide explicit results for the distributions of velocity
increments and density fluctuations. As explained above, this complements the study [34]
of the Brownian case, so that we now have explicit exact results for these quantities for the
two representative cases n = 0 and n = −2. This should prove useful to check the validity
of approximation schemes devised for generic initial conditions and higher dimensions. as
in [33] where the tails of these probability distributions are studied in the general case.

We first describe in Sect. 2 the white-noise initial conditions and the standard geomet-
rical interpretation in terms of parabolas of the Hopf-Cole solution of the dynamics [7].
Then, we recall in Sect. 3 the Eulerian one-point and two-point distributions, px(q) and
px1,x2(q1, q2), associated with the inverse Lagrangian map x �→ q , that were obtained in
[12]. This allows us to derive in Sect. 4 the distributions of the inverse Lagrangian incre-
ment and velocity increment, as well as the velocity structure functions. We also describe
the limiting large-scale and small-scale distributions. Next, we consider in Sect. 5 the dis-
tribution of the density within intervals of size x, and the density two-point correlation and
power spectrum. Then, turning to a Lagrangian point of view, we study the Lagrangian dis-
placement field in Sect. 6. Finally, we describe in Sect. 7 how the small-scale scalings shown
by these exact results can be generalized to other initial conditions and higher dimensions
within a heuristic approach.
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2 Initial Conditions and Geometrical Solution

2.1 Equation of Motion

We consider in this article the one-dimensional Burgers equation for the velocity field v(x, t)

in the limit of zero viscosity,

∂v

∂t
+ v

∂v

∂x
= ν

∂2v

∂x2
with ν → 0+. (1)

Let us recall here that in the cosmological context, the time t in the Burgers equation (1)
actually stands for the linear growing mode D+(t) of the density fluctuations, the spatial co-
ordinate x is a comoving coordinate (that follows the uniform Hubble expansion) and, up to
a time-dependent factor, the velocity v is the peculiar velocity (where the Hubble expansion
has been subtracted), see [17, 35]. In these coordinates, the evolution of the density field
is still given by the continuity equation (37) below, where the density ρ is the comoving
density. If we take ν = 0, that is we remove the right-hand side in (1), this is the well-known
Zeldovich approximation [32, 37], where particles always keep their initial velocity and
merely follow straight trajectories. The diffusive term of (1) is then added as a phenomeno-
logical device to prevent particles from escaping to infinity after crossing each other and to
mimic the gravitational trapping of particles within the potential wells formed by the over-
densities [17]. Of course, this cannot describe the inner structure of collapsed objects (e.g.,
galaxies) but it provides a good description of the large-scale structure of the cosmic web
[23].

As is well known [8, 19], introducing the velocity potential ψ(x, t) and making the
change of variable ψ(x, t) = −2ν ln θ(x, t) transforms the nonlinear Burgers equation into
the linear heat equation. This gives the explicit solution

v(x, t) = ∂ψ

∂x
with ψ(x, t) = −2ν ln

∫ ∞

−∞

dq√
4πνt

exp

[
− (x − q)2

4νt
− ψ0(q)

2ν

]
, (2)

where we introduced the initial condition ψ0(q) = ψ(q, t = 0). Then, in the limit ν → 0+

the steepest-descent method gives

ψ(x, t) = min
q

[
ψ0(q) + (x − q)2

2t

]
and v(x, t) = x − q(x, t)

t
, (3)

where we introduced the Lagrangian coordinate q(x, t) defined by

ψ0(q) + (x − q)2

2t
is minimum at the point q = q(x, t). (4)

The Eulerian locations x where there are two solutions, q− < q+, to the minimization prob-
lem (4) correspond to shocks (and all the matter initially between q− and q+ is gathered
at x). The application q �→ x(q, t) is usually called the Lagrangian map, and x �→ q(x, t)

the inverse Lagrangian map (which is discontinuous at shock locations) [5]. For the case of
white-noise initial velocity that we consider in this paper, it is known that there is only a
finite number of shocks per unit length [3, 28].
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2.2 Initial Conditions

In this article, we consider a white-noise initial velocity field v0(q), normalized by

〈v0(q)〉 = 0, 〈v0(q1)v0(q2)〉 = D δ(q1 − q2), (5)

where 〈. . .〉 is the average over all realizations of the initial velocity field. The velocity
potential is defined up to a constant, and we may choose to normalize the initial potential
ψ0(q) by ψ0(0) = 0, whence

ψ0(q) =
∫ q

0
dq ′ v0(q

′), 〈ψ0(q)〉 = 0, 〈ψ0(q1)ψ0(q2)〉 = D q1, for 0 ≤ q1 ≤ q2. (6)

Thus, the initial velocity potential is a bilateral Brownian motion that starts from the origin.
Then, thanks to the scale invariance of the Brownian motion, the scaled initial potential
ψ0(λq) has the same probability distribution as λ1/2ψ0(q), for any λ > 0. Hence, using the
explicit solution (3) we obtain the scaling laws

ψ(x, t)
law= t1/3ψ(x/t2/3,1), v(x, t)

law= t−1/3v(x/t2/3,1),
(7)

q(x, t)
law= t2/3q(x/t2/3,1),

where
law= means that both sides have the same probability distribution. Thus, any equal-time

statistics at a given time t > 0 can be expressed in terms of the same quantity at the time
t = 1 through appropriate rescalings. In this article we only investigate equal-time statistics,
so that t can be seen as a mere parameter in the explicit solution (2). Then, it is convenient
to introduce the dimensionless coordinates,

Q = q

γ
, X = x

γ
, V = tv

γ
, � = tψ

γ 2
, C = tc

γ 2
, with γ = (2Dt2)1/3,

(8)
which express the scaling laws (7) (here c is the parabola height that will be introduced
below in (9)). Thus, probability distributions written in terms of these variables no longer
depend on time, and the scale X = 1 is the characteristic length of the system, at any time.
On large quasi-linear scales, X � 1, density fluctuations are small and the distributions are
strongly peaked around their mean, with tails that are directly governed by the initial con-
ditions (but shocks cannot be neglected). On small nonlinear scales, X 
 1, density fluctu-
ations are large (e.g., most Eulerian intervals are empty) and probability distributions show
broad power-law regions. These behaviors will be clearly seen in the following sections.

2.3 Geometrical Interpretation

As is well known [7, ], the minimization problem (4) has a nice geometrical solution. Indeed,
let us consider the downward parabola Px,c(q) centered at x and of maximum c, i.e. of vertex
(x, c), of equation

Px,c(q) = − (q − x)2

2t
+ c. (9)

Then, starting from below with a large negative value of c, such that the parabola is every-

where well below ψ0(q) (this is possible thanks to the scaling ψ0(λq)
law= λ1/2ψ0(q) which
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shows that ψ0(q) only grows as |q|1/2 at large |q|), we increase c until the two curves touch
one another. Then, the abscissa of the point of contact is the Lagrangian coordinate q(x, t)

and the potential is given by ψ(x, t) = c. In order to use this geometrical construction,
it will be more convenient in the following to normalize the potential ψ0 by ψ0(q−) = 0,
where we first restrict the system to the finite interval [q−, q+], and to eventually take the
limits q± → ±∞ [12], instead of normalizing at the origin q = 0 as in (6). Indeed, this
avoids making the point q = 0 artificially play a special role. With this choice, the initial
potential ψ0(q) is a single Brownian motion that starts from the left boundary q−.

For the white-noise initial conditions (5), the process q �→ ψ0 is Markovian. Then, fol-
lowing the approach of [12], from the geometrical construction (9) one can see that a key
quantity is the conditional probability density Kx,c(q1,ψ1;q2,ψ2) for the Markov process
ψ0(q), starting from ψ1 at q1, to end at ψ2 at q2 ≥ q1, while staying above the parabolic
barrier, ψ0(q) > Px,c(q), for q1 ≤ q ≤ q2. This kernel was obtained in [12] and we recall
its expression in Appendix A with our notations. We also derive the closely related kernel
Ex,c(q1,ψ1;q2,ψ2;q), defined in (99), which only counts among these initial conditions the
ones that have a last excursion below Px,c+dc in the range [q, q + dq].

3 Known Eulerian Distributions

We briefly recall in this section the expressions of the one-point distributions, px(q) and
px(v), of the Lagrangian coordinate q(x, t) and velocity v(x, t) at the Eulerian point x.
We also consider the two-point distributions px1,x2(q1, q2) and px1,x2(q1, q2). These results
were already obtained in [12], but they are the basis of our computation in the following
sections of the distributions of Lagrangian and velocity increments, from which we obtain
the distribution of the matter density, and of the distribution of the Eulerian increment. We
give more details and explicit expressions in Appendix B.

3.1 One-Point Eulerian Distributions px(q) and px(v)

To any Eulerian point x we can associate the Lagrangian coordinate q(x, t) defined as the
location of the minimum in (4), except at shock locations where there are two (or more)
contact points between the initial potential ψ0(q) and the first-contact parabola Px,c. Since
shocks are in finite number per unit length [3, 28], Eulerian points have a well-defined
Lagrangian coordinate q(x, t) with probability one. However, note that the Eulerian position
x is usually not “occupied” by the infinitesimal mass that was initially located at q , as all
the matter is collected within shocks (thus a given Eulerian point has almost surely a zero
matter density) [35]. Nevertheless, through (3) one can derive the properties of the velocity
field from the Lagrangian coordinate q(x, t).

The one-point distribution, px(q), of the Lagrangian coordinate q at point x, can be
readily obtained from the kernel Ex,c given in (101), or the kernel Kx,c, as shown in [12].
For instance, from the definition of Ex,c we can write

px(q) = lim
q±→±∞

∫
dc dψ+ Ex,c(q−,0;q+,ψ+;q), (10)

where we normalized the initial potential by ψ0(q−) = 0 and we let q± → ±∞ as the size
of the system goes to infinity, as discussed below (9). Thus, in (10) we count all initial
conditions ψ0(q) that have a first-contact point of abscissa q with a parabola Px,c , and we
integrate over all possible heights c. We recall in Appendix B.1 the explicit expressions of
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PX(Q) and PX(V ), in terms of the scaling variables (8), see (102)–(103) and [12]. Both
distributions are related through the change of variable X = Q + V , that expresses the sec-
ond equation (3). Thanks to the homogeneity and isotropy of the system, the distribution
PX(Q) only depends on the distance |Q−X|, whereas P (V ) is even and no longer depends
on X. The asymptotic behavior of the distribution of the velocity V (and of the Lagrangian
coordinate Q = X − V ),

|V | � 1: P (V ) ∼ 2 |V |
Ai ′(−ω1)

e−ω1|V |−|V |3/3, (11)

shows that P (V ) decreases faster than a Gaussian at large V [2, 12]. Contrary to cases where
the initial velocity field has no ultraviolet divergence (i.e. the initial variance σ 2

v0
(0) = 〈v2

0〉
is finite, as for the case of Brownian initial velocity [34]), the large-v tail cannot be directly
understood from the statistics of rare local peaks in the initial velocity field, Here, as we
have recalled above, at any time t > 0 all the matter has collapsed within a finite number
of shocks per unit length, which merge in the course of time to build increasingly massive
shocks within larger voids [3, 12, 28]. Then, the typical velocities observed in the system are
governed by this merging process, rather than by the initial velocities of regular points that
would not have collided yet. Nevertheless, the cubic exponential tail (11) can be understood
as follows. A structure with a large velocity v has traveled by time t over a distance of
order x ∼ vt . On the other hand, the mean velocity v̄0(q) of the mass that was initially
located in the Lagrangian interval [q1, q2], of size q = q2 −q1, is v̄0(q) = ∫ q2

q1
dq ′ v0(q

′)/q =
(ψ2 − ψ1)/q . It is Gaussian with a variance σ 2

v̄0
(q) = D/q from (6). Since momentum is

conserved by the inviscid Burgers dynamics [7], so that the momentum of a shock is equal
to the sum of the initial momenta of all the particles it contains, we can associate to the

velocity v and the distance x = vt the Gaussian weight ∼ e
−v2/σ 2

v̄0
(vt) ∼ e−v3t/D , where we

did not write numerical factors in the exponential. This gives back the cubic exponential tail
(11). Even though we followed shocks in the previous argument, in spite of the fact that they
occupy a set of zero measure in Eulerian space, this still sets the tail of the Eulerian velocity
field as the velocity of a shock located at position x is related to the local velocity field
as vshock = (v(x−) + v(x+))/2, and v(x, t) has a constant slope of 1/t in-between shocks,
see [7]. Cubic exponential tails such as (11) are characteristic of probability distributions
obtained for these white-noise initial conditions [2, 3, 12].

3.2 Two-Point Eulerian Distributions px1,x2(q1, q2) and px1,x2(v1, v2)

We now consider the two-point distribution, px1,x2(q1, q2), of the Lagrangian coordinates
{q1, q2} associated with the Eulerian locations {x1, x2}. We take x1 < x2, which implies that
q1 ≤ q2 since particles do not cross each other and therefore remain well-ordered. One needs
to consider the two cases, i) q1 �= q2, and ii) q1 = q2. The first case, associated with different
first-contact points, gives the contribution [12]

P
�=
X1,X2

(Q1,Q2) = θ(Q2 − Q1) J (Q1 − X1) J (X2 − Q2) HX1,X2(Q1,Q2), (12)

where θ(Q2 −Q1) is the Heaviside function and we introduced the functions J and H given
by (103) and (106), whereas the second case, associated with a common first-contact point,
gives the contribution

P =
X1,X2

(Q1,Q2) = δ(Q2 − Q1) J (Q1 − X1) J (X2 − Q2) e−(Q1−X1)3/3+(Q2−X2)3/3. (13)
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One can check that the function HX1,X2(Q1,Q2), whence the contribution P
�=
X1,X2

(Q1,Q2),
and the contribution P =

X1,X2
(Q1,Q2) are invariant with respect to uniform translations of

Xi and Qi , in agreement with the statistical homogeneity of the system. Then, the full dis-
tribution PX1,X2(Q1,Q2) is given by the sum of both contributions (12) and (13). Next,
the two-point velocity distribution, PX1,X2(V1,V2), is obtained from (12), (13), by using
Vi = Xi − Qi .

We can note here that, thanks to the Markovian character of the process q �→ ψ0(q),
the n-point distributions of the velocities vi , and of the Lagrangian coordinates qi , factorize
as [12]

px1,...,xn (v1, . . . , vn) = px1(v1)p(x2, v2|x1, v1) · · ·p(xn, vn|xn−1, vn−1), (14)

and

px1,...,xn (q1, . . . , qn) = px1(q1)p(x2, q2|x1, q1) · · ·p(xn, qn|xn−1, qn−1), (15)

with the transition kernels

p(x2, v2|x1, v1) = px1,x2(v1, v2)

px1(v1)
and p(x2, q2|x1, q1) = px1,x2(q1, q2)

px1(q1)
, (16)

that can be obtained from the two-point and one-point distributions derived above. Again,
the kernels p(x2, v2|x1, v1) and p(x2, q2|x1, q1) are invariant with respect to uniform transla-
tions of the spatial coordinates xi and qi . However, contrary to the case of Brownian initial
velocity [6, 34], the transition kernel does not only depend on the two relative distances
x2 − x1 and q2 − q1 (thus it also depends on the third distance q1 − x1). This means that the
inverse Lagrangian map, x �→ q , does not have independent increments.

4 Probability Distributions of the Lagrangian and Velocity Increments

We now consider the probability distributions, px(q) and px(v), of the Lagrangian incre-
ment, q = q2 − q1, and of the velocity increment, v = v2 − v1, over the Eulerian distance
x = x2 − x1. These distributions can be directly obtained from the two-point distributions
(12) and (13), but they were not studied in previous works (except for the singular part (108)
associated with voids). In particular, as noticed in the conclusion of [12], the asymptotics
of px(v) at large v cannot be obtained in a straightforward manner from the estimations of
their Sect. 5, as the latter apply to the limit of large distance x at fixed v1 and v2. Next, we
shall need the distribution px(q) to derive the distribution of the overdensity at scale x in
Sect. 5.

4.1 Lagrangian Increment, q = q2 − q1, and Velocity Increment, v = v2 − v1

The probability distribution PX(Q) of the Lagrangian increment, Q = Q2 − Q1, can be
obtained by integrating the sum of the bivariate distributions (12) and (13) over the variable
Q1 at fixed Q = Q2 − Q1. This gives

PX(Q) =
∫ ∞

−∞
dQ1 J (Q1) J (X − Q − Q1)

[
θ(Q)H0,X(Q1,Q1 + Q)

+ δ(Q)e−Q3
1/3+(Q1−X)3/3

]
, (17)
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where θ(Q) is the Heaviside function. The second term gives a contribution of the form
P =

X (Q) = δ(Q)P 0
X , given by (108) in Appendix B.3. Note that Eulerian intervals with Q = 0

also have a zero matter content so that P 0
X is also the probability for an interval of size X

to be empty (see Sect. 5 below where we discuss the matter density field), in agreement
with the result obtained in [12] for this void probability. We recall the properties of this
distribution of voids in Appendix B.3 and Fig. 12.

In this article we are mostly interested in the regular part, P
�=
X (Q), associated with non-

empty Eulerian intervals, which has not been studied in previous works. From the first term
in expression (17) it reads as

P
�=
X (Q) = θ(Q)2

√
πXe−X3/12

∫ +i∞

−i∞

ds ds1 ds2

(2π i)3

es(Q−X)+(s1+s2)X/2+(s1−s2)2/(4X)

Ai(s1)Ai(s2)Ai(s1 − s)Ai(s2 − s)

×
∫ ∞

0
dr eXr Ai(r + s1)Ai(r + s2). (18)

We recall in Appendix C an alternative expression for the integral over r that appears in (18),
obtained in [12], which is useful to derive asymptotic behaviors. Thus, at large distances,
X � 1, (18) yields the asymptotic behaviors

X � 1: P
�=
X (Q) ∼

√
X

Ai ′(−ω1)2
Q−1/2 e−ω1X−X3/12 for 0 < Q 
 X−2, (19)

P
�=
X (Q) ∼

√
π

Ai ′(−ω1)2
|V |3/2 e−ω1|V |−|V |3/12 for |V | � 1 and Q � X−2, (20)

where V = X − Q is the dimensionless velocity as in (8). At small distances, X 
 1, (18)
leads to

X 
 1: P
�=
X (Q) ∼ X√

π
Q−1/2 for 0 < Q 
 1, (21)

P
�=
X (Q) ∼ 2

√
πX Q5/2 e−ω1Q−Q3/12 for 1 
 Q 
 X−1/2, (22)

P
�=
X (Q) ∼ 2π

√
X Q3/2 e−ω1Q−Q3/12 for Q � X−1/2. (23)

Thus, at all scales X the distribution P
�=
X (Q) displays an inverse square root tail at low Q.

At large X this tail has an exponentially small weight, that scales as the weight P 0
X of the

empty cells, and it is restricted to very low Q, whereas at small X it describes the full low-Q
regime. As expected, we can check from (20) that on large scales, X � 1, the Lagrangian
increment is centered on X, with the usual cubic exponential tails encountered for this white-
noise initial velocity spectrum, whereas on small scales, X 
 1, the distribution shows a
monotonous decline.

We display in Fig. 1 the probability distribution PX(Q) for three Eulerian sizes. This
clearly shows the change of shape as we go from large to small scales, as well as the transla-
tion of the mean 〈Q〉, that follows X from the conservation of matter (see (38) below). Note
that for numerical purposes, in order to follow the evolution of PX(Q) with X, and its be-
havior over the different characteristic domains listed in (19)–(23), it is useful to gradually
move the integration contours in the complex plane of (18) as one goes from one regime
to another one (but making sure that one does not cross singularities). One interest of these
results is to provide an explicit example that is representative of initial conditions in the
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Fig. 1 (Color online) Left panel: The probability distribution PX(Q) of the Lagrangian increment Q, for
three Eulerian sizes, X = 0.5,1 and 2, from (18). We have Q ≥ 0 and all curves display an inverse square
root singularity ∝ 1/

√
Q at Q → 0+ . In addition, there is a Dirac contribution, P 0

X
δ(Q), with the weight P 0

X
displayed in Fig. 12. Right panel: Same as left panel but on a logarithmic scale

Fig. 2 (Color online) Left panel: The probability distribution PX(V ) of the velocity increment V , for three
Eulerian sizes, X = 0.5,1 and 2, from (18). We have V ≤ X and all curves display an inverse square root
singularity ∝ 1/

√
X − V at V → X− . In addition, there is a Dirac contribution, P 0

X
δ(X − V ), with the

weight P 0
X

displayed in Fig. 12. Right panel: Same as left panel but on a semi-logarithmic scale

range −1 < n < 1, where n is the slope of the initial energy spectrum (i.e. E0(k) ∝ kn+1−D

in D dimensions), which show significant power at high wavenumbers. Then, we can see
that the distribution P

�=
X (Q) always diverges at low Q (i.e. at low density) as 1/

√
Q. This

implies in particular that, contrary to the cases −3 < n < −1, the very low-Q part of the dis-
tribution cannot be estimated through steepest-descent approaches that apply to rare events,
as discussed in [33]. Nevertheless, these approaches can give an estimate of P

�=
X (Q) in the

quasi-linear limit X → ∞ at fixed Q, studied in Sect. 4.2 below.
The probability distribution, PX(V ), of the velocity increment, V = V2 − V1, is obtained

from the distribution PX(Q) by using the relation V = X − Q. We show our results in
Fig. 2, for the same three Eulerian scales as for PX(Q) displayed in Fig. 1. There is no
longer a translation of the typical velocity, since 〈V 〉 = 0 for any scale X, but we clearly see
the translation of the inverse-square root tail, ∼ 1/

√
X − V , that follows the upper bound
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V ≤ X associated with empty cells (as seen from the relation X = Q+V and the constraint
Q ≥ 0).

4.2 Asymptotic Distribution on Large Scales

On large scales, X � 1, the distributions PX(Q) and PX(V ), except for the exponentially
small contributions associated with Q = 0 and Q 
 X−2 in (108) and (19), can be described
by the symmetric distribution F∞,

X � 1: PX(Q) ∼ F∞(X − Q) and PX(V ) ∼ F∞(V ), (24)

with a Fourier transform F̂∞ given by:

F∞(V ) =
∫ ∞

−∞

dk

2π
eikV F̂∞(k) with F̂∞(k) =

(∫ +i∞

−i∞

ds ′

2π i

1

Ai(s ′)Ai(s ′ + ik)

)2

. (25)

Equation (25) is obtained from (18) by using the asymptotic behavior of the integral over r ,
as given by the first term in (111), and next making the change of variable s = ik. The
scaling function F∞(V ) no longer depends on X: the distribution of the velocity increment
V converges to the finite distribution F∞ on large scales X → ∞. Note that in this limit the
upper boundary on V , V ≤ X, associated with the positivity of Q = X − V , goes to +∞
so that the limiting function F∞(V ) is defined over the whole real axis. This is also why
the Laplace transform (18) naturally gives rise to the Fourier transform (25) in this limit.
Moreover, we can see from (25) that F∞(V ) is even (the change of integration variable
s ′ → s ′ − ik/2 in (25) readily shows that F̂∞(k) is even). The asymptotic behaviors of
F∞(V ) at large V can be read from (20):

|V | � 1: F∞(V ) ∼
√

π

Ai ′(−ω1)2
|V |3/2 e−ω1|V |−|V |3/12. (26)

Thus, we recover the cubic exponential tails that are characteristic of white-noise initial
conditions [2, 3, 12] and can be understood at a qualitative level following the discussion
below (11). In fact, as shown in [33], on a quantitative level it is possible to obtain the factor
1/12 in the exponential (26) through a simple steepest-descent approach, that identifies the
initial conditions (i.e. the relevant saddle-points) that give the main contribution to these
tails. Then, the exact result (26) provides a useful nontrivial test of such general approaches
that rest on some additional assumptions (for instance, one only looks for symmetric saddle-
points).

Of course, the scaling function F∞(V ) does not capture the low-Q power-law tail (19).
However, using the property

∫ +i∞

−i∞

ds

2π i

1

Ai(s)2
= 1, (27)

we can see that the distribution F∞(V ) is normalized to unity as it should, since the weights
of the low-Q tail (19) and of the Dirac term (108) vanish in the limit X → ∞. We show the
scaling function F∞(V ) in Fig. 3.

From (24)–(25), the moments of the velocity increment are given in this limit by

X → +∞: 〈V 2n+1〉 = 0, 〈V 2n〉 = (−1)n d2nF̂∞
dk2n

(0), (28)
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Fig. 3 (Color online) Left panel: The asymptotic distribution F∞(V ) of the velocity increment V , reached
in the limit of large Eulerian distance X � 1, from (25). The dashed lines show the asymptotic behavior (26).
Right panel: Same as left panel but on a logarithmic scale

whence

〈V 〉 = 0 and 〈Q〉 = X, 〈V 2〉 = 〈Q2〉c = −2

3

∫ +i∞

−i∞

ds

2π i

s

Ai(s)2
� 0.837. (29)

We can check that we recover 〈Q〉 = X, as implied by the conservation of matter. We can see
that there is negligible power on large scales since 〈Q2〉c goes to a constant for X → +∞.
This holds for cumulants of all orders, as the scaling function F∞(V ) does not depend on X

(see also the left panel of Fig. 6, where we can see that both 〈Q2〉c and 〈Q4〉c have a finite
nonzero large-scale limit whereas 〈Q3〉c vanishes by symmetry of F∞).

Equations (24)–(26) and (28) show that, because of the lack of power at large scales in the
initial velocity field, at any time t > 0 the system observed at any scale x, whatever large, is
governed by nonlinear effects and exhibits strongly non-Gaussian statistics, even though the
initial conditions are Gaussian. Indeed, the redistribution of matter within a series of discrete
shocks has regularized the initially singular white-noise velocity field, through the balance
between the infinite different sign velocities of neighboring particles, over lengths of order
(2Dt2)1/3, that have merged in a single shock. Moreover, the velocity field in the voids is
governed by the motion of the boundary shocks, since from (3) it has a constant slope 1/t

in-between shocks, and the velocity of a shock satisfies vshock = (v(x−)+ v(x+))/2, see [7].
These processes are clearly nonperturbative and give rise to the non-Gaussian statistical
properties described above in the large-scale limit. This would not be the case for initial
conditions with significant initial power on large scales. Then, even though shocks may
have formed as soon as t > 0, one still recovers the initial Gaussian statistics on large scales,
as explicitly checked in [34] for the case of a Brownian initial velocity field (where the
initial energy spectrum is E0(k) ∝ k−2 instead of the constant spectrum associated with the
white-noise initial condition studied in the present article).

Again, these exact results provide a useful confirmation of the results obtained by ap-
proximate methods, such as the steepest-descent approach of [33]. Indeed, there it is found
that for n > D − 3, which includes the case {n = 0,D = 1} studied in this article, the rel-
evant saddle-points always give rise to shocks, which is not the case for initial conditions
with less initial power at high wavenumbers (such as {n = −2,D = 1}, i.e. Brownian 1-D
initial velocity).
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4.3 Asymptotic Distribution on Small Scales

On small scales, apart from the Dirac contribution (108), associated with empty cells, and
the very large-Q tail (23), the distributions PX(Q) and PX(V ) can be described by the
function F0,

X 
 1: PX(Q) ∼ X F0(Q) with Q > 0 and F0(Q) =
∫ +i∞

−i∞

ds

2π i
esQ F̃0(s), (30)

with

F̃0(s) = −2
∫ +i∞

−i∞

ds ′

2π i

1

Ai(s ′)2

∂

∂s ′
Ai ′(s ′ + s)

Ai(s ′ + s)
= −4

∫ +i∞

−i∞

ds ′

2π i

Ai ′(s ′)Ai ′(s ′ + s)

Ai(s ′)3Ai(s ′ + s)
. (31)

The expressions (30)–(31) are obtained from (18) by taking the Gaussian integration over s2

(since |s2 − s1| ∼ √
X we can set at leading order s2 = s1 in (18), apart from the Gaussian

factor e(s1−s2)2/(4X)), and next setting X = 0, which allows to perform the integral over r .
Note that a change of variable and an integration by parts allow to write F0(Q) as

F0(Q) = 2Q

(∫ +i∞

−i∞

ds ′

2π i

e−s′Q

Ai(s ′)2

)(∫ +i∞

−i∞

ds

2π i
esQ Ai ′(s)

Ai(s)

)
. (32)

It is clear that the integral over Q of the distribution (30) is not normalized to unity since it
decreases as X at small Eulerian distance. Indeed, in this limit almost all Eulerian cells have
a zero Lagrangian increment (whence a zero matter density), associated with the Dirac con-
tribution (108) (see the first limit in (109)), whereas nonempty cells occur with a probability
proportional to X, see (21)–(23). This can be directly understood from the fact that all the
matter is condensed into discrete shocks that occur in a finite number per unit length [3, 28],
so that the probability for an Eulerian interval to contain at least one shock (which is equal
to 1 − P 0

X) scales as X for small cell size X.
In fact, the comparison of (32) with results obtained in [12] shows that F0(Q) is also the

mass function of shocks, as we shall check in Sect. 6.3 below through a different method.
Therefore, the expression (30) actually means that on small scales the probability distribu-
tion PX(Q) is asymptotically equal to the probability to encounter one shock of strength Q

in the interval of size X. Indeed, since shocks are isolated it is clear that in the limit of small
size X the probability to have two or more shocks within X goes to zero faster than X, so
that PX(Q) is governed by the probability to encounter one shock over the length X, which
directly gives the scaling (30) where F0(Q) would be defined as the shock mass function.
Thus, how results explicitly show how the scaling (30) and the shock mass function F0(Q)

arise from the full distribution (18) of the Lagrangian increment Q.
This property is well-known to hold for any Burgers system without dense shocks [14,

30]. Then, as pointed out in [30], who studied the case of compactly supported white-noise
initial velocity, the statistics of the velocity field (whence of the Lagrangian increment Q) at
scales much smaller than the average distance between shocks are fully determined by the
one-point distribution of shock strength n(m) (which in our case is equal to F0(Q) as seen
in (77) below). As noticed in [30], the case of compact initial conditions is in a different
universality class than the system studied here, where the white-noise initial velocity (5)
extends to the whole real line, in the sense that the scalings (8) no longer hold. Indeed, the
size L of the initially nonzero velocity field introduces a new scale and at late times there are
only two shocks left, which allows [30] to compute both single- and multiple time-velocity
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Fig. 4 (Color online) Left panel: The scaling function F0(Q) that describes the distribution of the La-
grangian increment Q in the limit X 
 1, from (30)–(31). This is also the mass function of shocks, as
checked in (77) below. The dashed lines are the asymptotic behaviors (33). Right panel: Same as left panel
but on a logarithmic scale

structure functions. Nevertheless, on small scales, much below the typical distance between
shocks, both systems show the same scalings (see (35) and (36) below), governed by the
one-shock contribution.

Again the asymptotic behaviors can be read from (21)–(23):

Q 
 1: F0(Q) ∼ 1√
πQ

, Q � 1: F0(Q) ∼ 2
√

π Q5/2 e−ω1Q−Q3/12. (33)

We show the function F0(Q) and its asymptotic tails (33) in Fig. 4, see also [12]. Note that
the scaling function F0(Q) does not describe the very far tail Q � X−1/2 of (23), which
is repelled to infinity in the limit X → 0. This very high-Q tail is related to the behavior
of PX(Q) at large scales, as seen from the comparison with (23). Indeed, it corresponds to
the limit of very rare events, where the tail of the distribution is governed by specific initial
conditions, independently of the scale X. These are the saddle-points obtained in [33], which
set the cubic exponential falloffs of both (20) and (23). Thus, for any finite X the very far
tail (23) of the distributions PX(Q) and PX(V ) is not captured by the shock mass function,
but this regime is repelled to infinity as X → 0.

For any ν > 0, where the contribution from the Dirac term (108) vanishes, we obtain for
the moments of the Lagrangian increment

ν > 0: 〈Qν〉 ∼ X �[ν + 1]
∫ +i∞

−i∞

ds

2π i
(−s)−ν−1 F̃0(s), (34)

where the integration contour runs to the left of the origin, �(s) < 0. Thus, we recover
the fractality of the inverse Lagrangian map, 〈Qν〉 ∝ X, which is well known to be due
to the contribution from shocks as discussed above [14, 30]. Indeed, if we have a shock
of finite Lagrangian length δQs at position Xs , it gives a contribution [Q(Xs + X/2) −
Q(Xs − X/2)]ν ∼ (δQs)

ν which remains of order unity for X → 0+ for any ν > 0. Next,
the probability to have a shock of a given finite strength δQs in a small Eulerian interval
X scales as X at small distances, which gives rise to the factor X in (34). Therefore, the
scaling (34) is actually quite general and applies as soon as shocks have formed with a finite
probability [14, 30], above a critical exponent νc that depends on the initial conditions (here
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νc = 0). We can note that the moments diverge for ν < 0 because of the Dirac contribution
(108), whereas for other initial conditions such as a Brownian initial velocity they can remain
well-defined and obey a second scaling law below νc [1, 34]. For integer ν we obtain:

n ≥ 1: 〈Qn〉 ∼ X (−1)n dnF̃0

dsn
(0), whence 〈Q〉 ∼ X,

(35)

〈Q2〉 ∼ X
16

15

∫ +i∞

−i∞

ds

2π i

s2

Ai(s)2
� 1.136X.

Again, we can check that 〈Q〉 = X, in agreement with the conservation of matter. The scal-
ing (35) also implies for the cumulants 〈Qn〉c ∝ X in the small-scale limit X 
 1, as can be
checked in the left panel of Fig. 6. This gives for the moments of the velocity increment

〈V 〉 = 0 and for n ≥ 2: 〈V n〉 ∼ X
dnF̃0

dsn
(0),

(36)

〈[v(x2, t) − v(x1, t)]n〉 ∼ F̃ (n)

0 (0)

(
2D

t

)n/3
x2 − x1

(2Dt2)1/3
.

Thus, we recover the usual anomalous scaling of the structure functions, 〈[v(x + �) −
v(x)]n〉 ∝ � at small distance �, that was also observed in numerical simulations [28]. As
explained above, this is due to the contribution from shocks [14, 30]. We further discuss
these small-scale scalings in Sect. 7.1 below, on a more general setting.

5 Density Field

5.1 Distribution of the Overdensity η as a Function of Scale x

We now consider the evolution of the density field, ρ(x, t), that is generated by the Burgers
velocity field, starting at t = 0 with a uniform density ρ0. Thus, the density field obeys the
usual continuity equation,

∂ρ

∂t
+ ∂

∂x
(ρv) = 0 with ρ(x,0) = ρ0, (37)

whereas the velocity field evolves through the Burgers equation (1). As recalled in the intro-
duction, in the cosmological context this also provides an approximation for the formation
of large-scale structures (the cosmic web), known as the “adhesion model” [17, 35]. Then,
the density ρ is the comoving density (i.e. measured in comoving coordinates x that fol-
low the Hubble expansion) and t is linear growing mode D+. Thanks to the conservation
of matter, the mass m located between the Eulerian positions x1 < x2 is m = ρ0(q2 − q1),
where q(x, t) is the inverse Lagrangian map. Then, the overall overdensity, η = m/(ρ0x),
in the interval of size x = x2 − x1, is given by η = q/x = Q/X. Thus, the probability distri-
bution, PX(η), of the overdensity η, is given by the distribution, PX(Q), of the Lagrangian
increment Q, through

η = m

ρ0x
= Q

X
whence PX(η) = XPX(Q). (38)
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Fig. 5 (Color online) Left panel: The probability distribution PX(η) of the overdensity
η = m/(ρ0x) = Q/X, for three Eulerian sizes, X = 0.5,1 and 2, from (18), (38). All curves display
an inverse square root singularity ∝ 1/

√
η at small densities η → 0+ . In addition, there is a Dirac contribu-

tion, P 0
X

δ(η), with the weight P 0
X

displayed in Fig. 12, associated with empty cells. At large scales X we
recover a distribution that is sharply peaked around the mean density, 〈η〉 = 1 (i.e. 〈ρ〉 = ρ0). Right panel:
Same as left panel but on a logarithmic scale

Explicit expressions are obtained by substituting (108) and (18). In particular, the singular
part (108) gives the Dirac contribution P 0

Xδ(η) associated with empty cells. For the regular
part, η > 0, the asymptotic behaviors at large and small scales are directly read from (19)–
(23) as

X � 1: PX(η) ∼ X

Ai ′(−ω1)2
η−1/2 e−ω1X−X3/12 for η 
 X−3, (39)

PX(η) ∼
√

πX5/2

Ai ′(−ω1)2
|η − 1|3/2 e−ω1X|η−1|−X3|η−1|3/12

for |η − 1| � X−1 and η � X−3, (40)

and

X 
 1: PX(η) ∼ X3/2

√
π

η−1/2 for η 
 X−1, (41)

PX(η) ∼ 2
√

πX9/2 η5/2 e−ω1Xη−X3η3/12 for X−1 
 η 
 X−3/2, (42)

PX(η) ∼ 2πX3 η3/2 e−ω1Xη−X3η3/12 for η � X−3/2. (43)

Thus, at all scales we have an inverse square root tail at low densities, ∝ 1/
√

η, that fol-
lows from the low-Q tail obtained in Sect. 4.1. Again, its weight shows the same cubic
exponential decay at large scales as the weight P 0

X of empty cells (109), whereas at small
scales it describes the full low-density regime. On large scales, the density distribution is
centered on the mean 〈η〉 = 1, with cubic exponential tails on both sides, until it reaches the
very low-density tail ∝ 1/

√
η at η 
 1/X3. On small scales the density distribution shows

a monotonous decline, with again a cubic exponential tail at large densities, η � 1/X. We
display the density distribution PX(η) in Fig. 5, for three Eulerian sizes as in Fig. 1, to show
its evolution with scale. Again, the cubic exponential tails (40) and (43) can be obtained
from a simple and general steepest-descent method [33]. However, the exponent −1/2 of
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the power-law regime that appears at small scales in (41) is beyond the reach of such meth-
ods. It would be interesting to build general approaches that would be able to describe this
highly nonlinear regime, for generic initial conditions and dimensions. Then, the result (41)
would allow one to check the accuracy of such a method for a nontrivial case.

From the results of Sect. 4.2, we can see that on large scales the distribution of the
overdensity is described by the asymptotic distribution

X � 1: PX(η) ∼ X F∞(X(η − 1)), (44)

which is increasingly peaked around η = 1 at larger scales. Thus, we recover as expected the
uniform density ρ0 on large scales, with a distribution that falls off faster than a Gaussian,
as e−X3|η−1|3/12. Since η = Q/X = 1 − V/X, we obtain from (28)–(29) for the moments of
the density in this large-X limit:

X � 1: 〈(η − 1)2n+1〉 = 0,
(45)

〈(η − 1)2n〉 = (−1)n

X2n
F̂ (2n)

∞ (0), whence 〈η〉 = 1, 〈η2〉c � 0.837

X2
.

In agreement with the conservation of matter we can check that 〈η〉 = 1.
On small scales we obtain from Sect. 4.3

X 
 1: PX(η) ∼ X2 F0(Xη), and for ν > 0:
(46)

〈ην〉 ∼ X−ν+1 �[ν + 1]
∫ +i∞

−i∞

ds

2π i
(−s)−ν−1 F̃0(s).

As seen in Sect. 4.3, the scaling function F0(Q) in (30) describes the probability distribu-
tion of the Lagrangian increment down to Q = 0+, hence it also describes the probability
distribution of the overdensity down to η = 0+ in (46). Next, the moments of integer order
are given by

X 
 1, n ≥ 1: 〈ηn〉 ∼ X−n+1 (−1)n F̃ (n)

0 (0) whence 〈η〉 = 1, 〈η2〉 � 1.136

X
, (47)

which gives the cumulant hierarchy

X 
 1, n ≥ 1: Sn(X) = 〈ηn〉c
〈η2〉n−1

c

∼ (−1)n F̃ (n)

0 (0)

F̃ ′′
0 (0)n−1

. (48)

Thus, the ratios Sn(X) have a finite limit for X → 0 and the cumulant generating function
ϕX(y) can be written as

X 
 1: ϕX(y) =
∞∑

n=1

(−1)n−1 Sn(X)
yn

n! ∼ −F̃ ′′
0 (0)

[
F̃0

(
y

F̃ ′′
0 (0)

)
− F̃0(0)

]
. (49)

As explained in Sect. 4.3, the scalings (46)–(49) are due to the presence of shocks and are
therefore quite general: they apply as soon as shocks have formed with a finite probability,
for any initial conditions. We discuss these small-scale scalings in Sects. 7.2 and 7.3 below,
for more general initial conditions and higher dimensions.

We can note that on large scales the ratios Sn(X) go to zero for odd n and diverge for
even n, as seen from (45). This is due to the fact that, even though we start with Gaussian
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Fig. 6 (Color online) Left panel: The first few cumulants 〈Qn〉c of the Lagrangian increment Q, as a function
of the dimensionless scale X = x/(2Dt2)1/3. Right panel: The ratios Sn, defined by the first equality in (48),
as a function of X on a semi-logarithmic scale

initial conditions at t = 0, the initial energy spectrum is so “blue” (which also leads to a
singular white-noise initial velocity) that at any time t > 0 the system is strongly affected
by nonlinear effects (associated with the building of isolated shocks amid empty regions).
This regularizes the density distribution, px(η), but the latter remains non-Gaussian in the
large-scale limit x → ∞, as seen in (44)–(45) or the explicit expression (40). Thus, we
have 〈η2n〉c ∼ 〈η2〉nc and S2n(X) ∼ 〈η2〉1−n

c ∼ X2(n−1), for n ≥ 1 and X → ∞, whereas odd
cumulants are exponentially small. By contrast, for initial conditions with a sufficiently
“red” spectrum, such as the Brownian case, the density distribution becomes Gaussian on
large scales (it remains governed by the initial field and linear theory) and the ratios Sn(X)

have a finite large-scale limit that can be computed through perturbative means, see [33, 34].
We show in Fig. 6 the first few cumulants 〈Qn〉c and ratios Sn. As explained above and

in Sect. 4.2, at large scales both 〈Q2〉c and 〈Q4〉c reach a nonzero value, as the large-scale
distribution is non-Gaussian, whereas the odd cumulant 〈Q3〉c shows a cubic exponential
decay, since the limiting scaling function F∞ is even. At small scale all cumulants show a
linear dependence on X, in agreement with (35). Then, the ratio S3 also shows a cubic expo-
nential decay on large scales whereas S4 goes to −∞; next on small scales both coefficients
reach a nonzero asymptotic value.

5.2 Density Two-Point Correlation and Power Spectrum

We now consider the two-point correlation, ξ(x, t), of the density field ρ(x, t) itself:

〈ρ(x1, t)ρ(x2, t)〉c = ρ2
0 ξ(x2 − x1, t), whence 〈η2〉c =

∫ x

0

dx1 dx2

x2
ξ(x2 − x1). (50)

In terms of the dimensionless variables (8), using η = Q/X, we obtain

〈Q2〉 − X2 =
∫ X

0
dX1 dX2 ξ(X2 − X1), whence ξ(X) = 1

2

d2

dX2
〈Q2〉 − 1. (51)

Then, the small-distance behavior (35), that was associated with shocks, gives rise to a Dirac
contribution

ξ 0(X) = F̃ ′′
0 (0) δ(X), whence ξ 0(x) = (2Dt2)1/3 F̃ ′′

0 (0) δ(x) � 1.136 (2Dt2)1/3 δ(x).

(52)
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In terms of the density power spectrum, P(k, t), defined by

ρ(x, t) − ρ0 =
∫ ∞

−∞

dk

2π
eikx ρ̂(k, t), 〈ρ̂(k1, t)ρ̂(k2, t)〉 = δ(k1 + k2)2π P(k1, t), (53)

this gives the asymptotic behavior at high k,

k → ∞: P(k, t) → F̃ ′′
0 (0) (2Dt2)1/3 � 1.136 (2Dt2)1/3. (54)

As expected, shocks, that form a series of Dirac peaks in the density field, give rise to a
white-noise power spectrum in the limit of high wavenumbers. In addition, there are also
nonzero correlations at finite distances, that can be obtained from the second cumulant of
the Lagrangian increment Q through (51). Using the expression (18), making the change of
variable si → si + s and integrating over Q and s, we obtain

〈Q2〉 = ∂2

∂s2

∣∣∣∣
0

2
√

πXe−X3/12
∫ +i∞

−i∞

ds1 ds2

(2π i)2

e(s1+s2)X/2+(s1−s2)2/(4X)

Ai(s1)Ai(s2)Ai(s1 + s)Ai(s2 + s)

×
∫ ∞

0
dr eXr Ai(r + s1 + s)Ai(r + s2 + s). (55)

Next, going back to si → si − s, using the expression (111), which allows to remove the
asymptotic X2 behavior of 〈Q2〉, and differentiating twice with respect to X, the density
two-point correlation reads as

X > 0: ξ(X) = √
π

∫ +i∞

−i∞

ds1 ds2

(2π i)2

1

Ai(s1)Ai(s2)

{
−A′′

s1,s2
(X)

∫ ∞

X

dy e−�s1,s2 (y) hs1,s2(y)

+ e−�s1,s2 (X)
[
2A′

s1,s2
(X)hs1,s2(X) + As1,s2(X)(h′

s1,s2
(X)

− �′
s1,s2

(X)hs1,s2(X))
]}

, (56)

where the functions �s1,s2(X) and hs1,s2(X) are defined in (112)–(113) and we introduced
the function As1,s2(X) given by

As1,s2(X) = ∂2

∂s2

∣∣∣∣
0

e−sX

Ai(s1 − s)Ai(s2 − s)
. (57)

This yields the asymptotic behaviors

ξ(0) � −0.56, and for X → ∞: ξ(X) ∼ −√
π

16Ai ′(−ω1)2
X11/2 e−ω1X−X3/12. (58)

Thus, as we can check in Fig. 7, the density correlation is negative for x > 0. This may
be understood from the fact that, since the matter collapses within isolated zero-thickness
objects (shocks), close to a shock there is a relative underdensity as matter has already fallen
into that shock. In terms of particles of infinitesimal mass, the massive aggregate associated
with the shock has swept matter from its neighborhood along its motion at previous times
as particles stick together after collisions. Thus, starting with a white-noise initial velocity
which shows no correlations over finite distance x > 0, some (anti-)correlations appear as
soon as t > 0 over scales of order x ∼ (2Dt2)1/3 (i.e. X ∼ 1), but they remain very weak as
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Fig. 7 (Color online) Left panel: The density two-point correlation, ξ(x) = 〈ρ(x1)ρ(x1 + x)〉c/ρ2
0 , as a

function of the dimensionless scale X = x/(2Dt2)1/3, from (56). It is negative over x > 0 but there is an
additional Dirac contribution at the origin, given by (52). The dashed line is the large-X asymptotic behav-
ior (58). Right panel: Same as left panel but on a logarithmic scale

they decay even faster than a Gaussian at larger scales. Again, the cubic exponential falloff
(58) can be understood from simple arguments. Following the discussion above, correlations
at scale x arise from the motion of shocks over distances of order x and the building of voids
of size X. Then, as discussed below (109), this can be associated to an initial mean velocity
v̄0(x) ∼ x/t over the interval x and to a probabilistic weight ∼ e−(x/t)2/(D/x) ∼ e−x3/(Dt2),
which gives back the cubic exponential tail (58). In agreement with this discussion, we can
check that the tail (58) is the same (apart from the power-law prefactor) as the one obtained
in (109) for the probability of voids.

From (53) the density power spectrum can be written, in terms of dimensionless vari-
ables, as

P(K) = 2
∫ ∞

0
dX cos(KX)ξ(X) + F̃ ′′

0 (0) = 2
∫ ∞

0
dX[cos(KX) − 1]ξ(X), (59)

where K = γ k (and γ was defined in (8)). In the first equality we explicitly separated the
Dirac contribution (52) from the integral over X > 0. The second equality follows by notic-
ing that P(0) = 0. Indeed, from (51) we have

P(0) =
∫ ∞

−∞
dX ξ(X) = lim

X→∞

[
d

dX
〈Q2〉 − 2X

]
= 0, (60)

as the term in brackets decays as e−X3/12 at large X, as seen from Sect. 4.2 and Appendix C.
We show in Fig. 8 our results for the power spectrum, using (56) and (59). We clearly see
the quadratic behavior at low K , that can be obtained by expanding the cosine in (59), and
the saturation at high wavenumbers to the white-noise spectrum (54) due to shocks. Since
the correlation function decays faster than a Gaussian at large distances the power spectrum
is actually regular at k = 0. The high-wavenumber behavior (54) is universal and appears
as soon as shocks have formed, along with the scalings (35)–(36) for the Lagrangian and
velocity increments observed on small scales. The quadratic low-k behavior applies from
(59) to initial conditions such that the linear power on large scales decays faster than k2 (by
contrast, if the initial velocity field is given by a Brownian motion, which shows significant
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Fig. 8 (Color online) Left panel: The dimensionless density power spectrum P (K), as a function of the
dimensionless wavenumber K = (2Dt2)1/3k, from (59). It goes to zero as K2 at small K and it goes to a
constant at large K . Right panel: Same as left panel but on a logarithmic scale

power on large scales, the density power spectrum is exactly a white-noise spectrum over
all k, that is P(k) is constant down to k = 0).

Again, the results (56) and (59), shown in Figs. 7 and 8, may be useful to test general
approximation schemes. In particular, in the cosmological context, the matter two-point cor-
relation and power spectrum are among the main observables used to constrain cosmological
scenarios (both the global cosmological history, through the linear growth factor of density
fluctuations, and the primordial initial conditions, generated by an hypothetical inflationary
stage, through the shape of the power spectrum). For gravitational systems of this sort, no
good approximation scheme has been obtained yet that is able to estimate the density power
spectrum in both linear and nonlinear regimes (i.e. from large down to small scales), so
that one needs to use numerical simulations. The case studied in this article provides a rare
hydrodynamical example, closely related to 1-D gravitational dynamics as recalled above,
where a complete exact solution can be derived. In this respect, the present case of white-
noise initial velocity is somewhat more interesting than the case of Brownian initial velocity,
where the power spectrum is simply a constant over all scales, as it shows a transition be-
tween different low- and high-wavenumber regimes.

A key difference between Burgers dynamics and gravitational systems (and real turbu-
lence) is that the high-k regime is quite simple and universal, since it is governed by shocks
and shows a constant white-noise asymptote as in (54). By contrast, in 3-D gravitational (or
Navier-Stokes) systems, small-scale structures may show a broader variety (extended halos,
vortices, . . .) [21, 36] and it is not known whether universal exponents exist and for which
class of initial conditions they hold (in the cosmological context numerical simulations sug-
gest that there is no such universality as the high-k slope seems to depend on the initial slope
[26]).

6 Lagrangian Displacement Field

6.1 One-Point Distribution

We now consider the Burgers dynamics from a Lagrangian point of view, as opposed to
the Eulerian point of view described in the previous sections. Thus, labeling the particles
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by their initial position q at the initial time t = 0, we follow their trajectory x(q, t). Since
particles do not cross each other they remain well-ordered. Then, the probability, pq(≥ x),
for the particle q to be located to the right of the position x, is equal to the probability,
px(≤ q), for the Lagrangian coordinate q(x) associated with position x to be smaller than
or equal to q . This yields

PQ(X) = − ∂

∂X
PX(≤ Q) = − ∂

∂X

∫ Q

−∞
dQ′ P (Q′ − X) = P (Q − X),

whence PQ(X) = PX(Q), (61)

where we used from (102) the property that the Eulerian distribution PX(Q) only depends
on the relative distance Q − X as PX(Q) = P (Q − X) with P (V ) given by (102). Thus,
the one-point Eulerian and Lagrangian distributions are identical. This applies to any initial
conditions which are statistically homogeneous and isotropic, so that PX(Q) only depends
on |Q − X|.

6.2 Two-Point Distribution and Relative Distance

We now investigate the two-point distribution of the Lagrangian displacement field. In a
fashion similar to the one-point distribution, we can relate the Eulerian and Lagrangian
distributions by

PQ1,Q2(≥ X1,≤ X2) = PX1,X2(≤ Q1,≥ Q2). (62)

Then, for Q1 < Q2 the Dirac part (13) does not contribute and we obtain from (12), with
X1 ≤ X2,

PQ1,Q2(≥ X1,≤ X2) =
∫ Q1

−∞
dQ′

1

∫ ∞

Q2

dQ′
2 J (Q′

1 − X1) J (X2 − Q′
2) HX1,X2(Q

′
1,Q

′
2).

(63)
Using (103) and (106), this yields

PQ1,Q2(X1,X2) = − ∂2

∂X1∂X2
2
√

π(X2 − X1) e−(X2−X1)3/12

×
∫ +i∞

−i∞

ds1ds2ds ′
1ds ′

2

(2π i)4

e(s1−s2)Q1+(s′
2−s′

1)Q2

(s1 − s2)(s
′
1 − s ′

2)

× e−s1X1+s′
1X2+(s2−s′

2)(X1+X2)/2+(s2−s′
2)2/(4(X2−X1))

Ai(s1)Ai(s2)Ai(s ′
1)Ai(s ′

2)

×
∫ ∞

0
dr e(X2−X1)r Ai(r + s2)Ai(r + s ′

2). (64)

We can check that (64) is invariant through uniform spatial translations. Next, from
PQ1,Q2(X1,X2) we can derive the distribution, PQ(X), of the relative Eulerian distance,
X = X2 − X1. It only depends on the relative Lagrangian distance, Q = Q2 − Q1, through

PQ(X) =
∫ ∞

−∞
dX1 PQ1,Q1+Q(X1,X1 + X). (65)
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Fig. 9 (Color online) Left panel: The probability distribution PQ(X) of the Eulerian increment X, for three
Lagrangian lengths, Q = 0.5,1 and 2, from (68). The integral over X > 0 is smaller than unity as there is
an additional Dirac contribution, P shock

Q
δ(X), associated with shocks, with the weight P shock

Q
displayed in

Fig. 11. Right panel: Same as left panel but on a logarithmic scale

This gives

X > 0: PQ(X) = ∂2

∂X2
2
√

πX e−X3/12
∫ +i∞

−i∞

ds ds1 ds2

(2π i)3

× es(Q−X)+(s1+s2)X/2+(s1−s2)2/(4X)

s2Ai(s1)Ai(s2)Ai(s1 − s)Ai(s2 − s)

×
∫ ∞

0
dr eXr Ai(r + s1)Ai(r + s2), with �(s) < 0, (66)

where the integration contour over s runs to the left of the pole at s = 0. Note that the
expression (66) is similar to the result (18) obtained for the distribution of the Lagrangian
increment Q over a fixed Eulerian interval X, except for the double derivative with respect
to X and the factor 1/s2. This leads to the relationship between the distributions of the
Eulerian and Lagrangian increments:

∂2

∂Q2
PQ(X) = ∂2

∂X2
PX(Q). (67)

On the other hand, using the expression (111) and the comparison with (18), taking the
derivatives with respect to X in (66) gives the relationship

PQ(X) = PX(Q) + 2
√

π

∫ +i∞

−i∞

ds ds1 ds2

(2π i)3

es(Q−X) e−�s1,s2 (X)

s2Ai(s1)Ai(s2)Ai(s1 − s)Ai(s2 − s)

× [−2s hs1,s2(X) − �′
s1,s2

(X)hs1,s2(X) + h′
s1,s2

(X)
]
. (68)

We show in Fig. 9 the distribution PQ(X) obtained for three Lagrangian intervals Q. In a
fashion similar to the Eulerian distribution PX(Q) shown in Fig. 1, on large scales, Q � 1,
the Lagrangian distribution PQ(X) is centered on Q, with cubic exponential tails on both
sides as seen in (69) below, whereas on small scales, Q 
 1, it shows a monotonous decline.
However, contrary to the Eulerian distribution, the Lagrangian distribution PQ(X) does not
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Fig. 10 (Color online) Left panel: The scaling function G0(X) that describes the distribution of the Eulerian
increment X in the limit Q 
 1, from (70)–(71). The dashed line is the asymptotic behavior (72). Right
panel: Same as left panel but on a logarithmic scale

show an inverse square-root tail at low X as PQ(0) is finite. As can be seen in Fig. 9,
the distribution PQ(X) given by (66)–(68) over X > 0 is not normalized to unity as its
weight decreases for smaller Q. Indeed, there is an additional Dirac contribution associated
with shocks, of the form P shock

Q δ(X), where the Eulerian increment X is zero (all particles
in the initial range [Q1,Q2], of length Q = Q2 − Q1, have merged into a single shock).
Since the weight of this contribution grows at smaller Q, as can be checked in Fig. 11, the
normalization of the regular contribution (66) decreases at smaller Q.

On large scales, Q � 1, from the expression (66) or the relation (67), we obtain

Q � 1: PQ(X) ∼ F∞(X − Q), whence PQ(X) ∼ PX(Q) for large Q and X, (69)

where the function F∞ was given in (25) and shown in Fig. 3. Thus, at large scales the
distribution PQ(X) is peaked around X = Q, with fluctuations of order unity that become
increasingly small as compared with Q for Q → ∞. Moreover, it becomes identical to the
Eulerian distribution in this limit.

On small scales, Q 
 1, using the expression (111), we obtain a scaling similar to the
one seen in (30) for the Eulerian distribution,

Q 
 1: PQ(X) ∼ Q G0(X), with X > 0, (70)

and

G0(X) = 2
√

π

∫ +i∞

−i∞

ds1 ds2

(2π i)2)

e−�s1,s2 (X)

Ai(s1)2Ai(s2)2
[�′

s1,s2
(X)hs1,s2(X) − h′

s1,s2
(X)]. (71)

In particular, (71) gives the asymptotic behavior at large X:

X � 1: G0(X) ∼
√

π

8Ai ′(−ω1)2
X7/2 e−ω1X−X3/12. (72)

We show the scaling function G0(X) in Fig. 10. We can see that it is finite at X = 0 and is
monotonically decreasing.

The scaling of (70) is related to the fact that the system is described by a finite number of
shocks per unit length, with masses of order unity (in terms of the dimensionless variables



752 P. Valageas

Q and X). Then, in the limit Q → 0, the probability P shock
Q that all particles in the interval

[Q1,Q2], of length Q = Q2 −Q1, belong to the same shock goes to unity, and there remains
a probability of order Q that the particles Q1 and Q2 belong to different shocks, in which
case their Eulerian distance is of order unity (i.e. X ∼ 1). This gives rise to the scaling (70)
for this contribution associated with X > 0. This discussion shows that the scaling (70) is
less general than the scaling (30) obtained for the small-scale Eulerian distribution, since it
relies on the fact that shocks are well separated by distances of order unity. For instance,
in the case of Brownian initial velocity, the scaling (30) is still satisfied but the property
(70) is no longer valid. Indeed, in this case shocks are dense in Eulerian space and the
typical Eulerian distance X between particles initially separated by the Lagrangian distance
Q scales as X ∼ √

Q, as can be seen in [34].
As discussed above, in addition to the contribution (66) associated with X > 0, there is

a second contribution, of the form P shock
Q δ(X), associated with the case where both parti-

cles Q1 and Q2 belong to the same shock, whence X2 = X1. Its weight can be derived by
computing the weight PQ(X > 0) of the contribution (66). Integrating (66), which gives two
boundary terms at X = 0 and X = +∞, yields

PQ(X > 0) = 1 − P shock
Q , with P shock

Q = −2
∫ +i∞

−i∞

ds ds ′

(2π i)2

esQ

s2Ai(s ′)2

∂

∂s ′
Ai ′(s ′ + s)

Ai(s ′ + s)
,

�(s) < 0, (73)

where the integration contour over s runs to the left of the pole at s = 0. The comparison
with (30)–(31) gives the relation

d2

dQ2
P shock

Q = F0(Q), whence P shock
Q =

∫ ∞

Q

dQ′ (Q′ − Q) F0(Q
′). (74)

In particular, using the results of Sect. 4.3, (74) gives at once the asymptotic behaviors

Q → 0: P shock
Q ∼ 1 − F̃0(0)Q � 1 − 1.674Q,

(75)
Q → ∞: P shock

Q ∼ 32
√

π Q−3/2 e−ω1Q−Q3/12.

Thus, we recover the fact that the probability, P shock
Q , for two particles of initial Lagrangian

distance Q, to belong to the same shock, goes to unity for Q → 0, with a linear deviation so
that PQ(X > 0) ∼ F̃0(0)Q, in agreement with the scaling (70).

We display in Fig. 11 this probability P shock
Q , which clearly shows its steep falloff at

large Q. Again, the cubic exponential decay can be understood from the same arguments,
as those used for the tails (11) or (109) of Eulerian distributions. Note that the formation
of a single shock of strength q = q2 − q1 would be associated with a velocity difference
v2 − v1 = −q/t , rather than with the mean velocity v̄0 over the length q as was the case
for these Eulerian distributions. However, this difference does not give well-defined results
for the initial white-noise velocity field. Again, this is due to the fact that the dynamics is
governed by nonlocal processes, that is, one cannot obtain behaviors such as (75) from a
local analysis (i.e. a local Taylor expansion) of the initial velocity field. This clearly follows
from the fact that, at any time t > 0, matter has gathered in a series of discrete shocks,
which has strongly modified the velocity field: the latter has been regularized by the balance
between the (infinite) different sign velocities of neighboring particles over lengths of order
(2Dt2)1/3 and become strongly non-Gaussian, as seen in Sects. B.1 and 4.2. However, to
recover the tail (75), we can split the interval q into two equal parts, and note that at least
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Fig. 11 (Color online) Left panel: The probability P shock
Q

that a Lagrangian interval of size Q has collapsed
into a single shock, from (74). The dashed line is the asymptotic behavior (75). Right panel: Same as left
panel but on a logarithmic scale

one of the two mean initial velocities v̄1 and v̄2 of both intervals must be of order q/t , which
leads back to the cubic exponential tail (75).

6.3 Mass Function of Shocks

We briefly note here that the mass function of shocks, n(m), can be derived from the shock
probability pshock

q studied in the previous section. Here we define n(m)dm as the mean
number of shocks, per unit Eulerian or Lagrangian length (both functions are identical since
on large scales X = Q up to fluctuations of order unity, as seen in Sects. 4.2 and 6.2),
with a mass in the range [m,m + dm]. As in Sect. 5, since we consider a uniform initial
density ρ0, we have m = ρ0q for the mass associated with a Lagrangian interval q . Then,
the probability, pshock

q , that two particles of initial Lagrangian distance q belong to the same
shock, can be obtained by counting the number of shocks of mass m ≥ ρ0q , each shock
giving rise to a factor (m/ρ0 − q) as q1 may be located within the distance (m/ρ0 − q) from
its left boundary. In terms of dimensionless variables this reads as

P shock
Q =

∫ ∞

Q

dM (M − Q)N(M), with n(m) = 1

ρ0γ 2
N(M) and M = m

ρ0γ
. (76)

Then, using (74) we obtain at once

N(M) = d2P shock
Q

dQ2

∣∣∣∣
Q=M

= F0(M). (77)

From the expression (32) we can check that we recover the result of [12], who directly de-
rived the shock mass function from the geometrical construction (9) without considering the
Lagrangian displacement field. This provides a useful check of the computations performed
in Sect. 6.2 within a Lagrangian framework. The asymptotic properties of the shock mass
function can also be read from (33), see also [2, 3, 12]. Moreover, the integral properties

∫ ∞

0
dM N(M) = F̃0(0) � 1.674,

∫ ∞

0
dM MN(M) = −F̃ ′

0(0) = 1, (78)
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ensure that mass is conserved and that there is a finite mean number of shocks per unit length
(�1.674 shocks in the mean, in units of X and Q). Many more properties of shocks, such
as their n-point multiplicity functions as a function of their mass and velocity, can be found
in [12].

7 Small-Scale Heuristic Approach for General Initial Conditions

The results obtained in the previous sections were derived from exact computations, based
on (12) and (13). In this section, using a heuristic approach that assumes that small-scale
properties are governed by shocks, or point-masses in higher dimensions, we discuss how
small-scale scalings obtained for 1-D white-noise initial conditions would extend to generic
initial conditions and higher dimensions.

7.1 General 1-D Case for the Distributions of Lagrangian and Velocity Increments
on Small Scales

As explained in Sect. 4.3, the scalings PX(Q) ∼ XF0(Q) and 〈Qν〉 ∝ X are due to the
presence of shocks and as such they apply to a large class of initial conditions [14, 30].
Then, the distributions of the Lagrangian increment q and of the velocity increment v over
the distance x are determined by the one-point distribution of shock strength [30], and they
factorize as

x → 0, q > 0, v < x: px(q) ∼ x n(q), px(v) ∼ xt n(x − v) ∼ xt n(−v), (79)

where n(q) is the mass function of shocks, that is n(q)dq is the number of shocks of strength
q per unit length. Here we used the dimensional variables x and q because the power of time
that appears in the relevant scaling variables X and Q depends on the initial conditions. For
instance, for a power-law initial energy spectrum, E0(k) ∝ kn, with −3 < n < 1, we would
have X ∝ x/t2/(3+n) [18]. For initial energy spectra that are not a power law there may
not exist scaling variables such as (8) (for instance, for a smooth spectrum one may expect
a time-dependent effective exponent n(t)) but as soon as shocks are present one still has
scalings of the form 〈qν〉 ∼ x at small distance for ν ≥ 1. Note that for ν = 1 we always
have the exact relation 〈q〉 = x, because of the conservation of matter, but the linear scaling
over x does not always extend to powers 0 < ν < 1, as for the white-noise case studied in
the present paper, see (34). For instance, for Brownian initial velocity it only extends down
to ν = 1/2 [1, 34]. Indeed, as ν decreases the moment 〈qν〉 becomes increasingly sensitive
to low-density regions, characterized by low Lagrangian increment q , so that shocks are no
longer dominant (for the white-noise case they remain dominant down to ν = 0+ because
shocks are separated by voids where the Lagrangian increment q is exactly zero). It can be
useful to introduce the moment generating function �x(s), defined by

�x(s) =
∞∑

n=1

(−s)n

n! 〈qn〉 =
∫ ∞

0
dq (e−sq − 1)px(q), (80)

whence

px(q) =
∫ +i∞

−i∞

ds

2π i
esq �x(s) for q > 0, (81)
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where we assumed that all moments are finite and uniquely determine the function �x(s)

(note that adding a constant to �x(s), so that �x(0) �= 0, does not contribute to px(q) for
q > 0 as it only yields a Dirac δ(q)). From the small-scale scaling (79) we obtain

x → 0: �x(s) ∼ x �(s) and 〈qn〉 ∼ x (−1)n �
(n)

(0),

with �(s) =
∫ ∞

0
dq (e−sq − 1) n(q). (82)

For the case of white-noise initial velocity studied in this article, using the dimensionless
variables X and Q, we have N(Q) = F0(Q) and �(s) = F̃0(s) − F̃0(0), as shown by (30)–
(31) and (77). For the case of Brownian initial velocity, using results from [34], we have

N(Q) = 1√
π

Q−3/2 e−Q, �(s) = 2(1 − √
1 + s), for Brownian initial velocity,

(83)
where we used the relevant scaling variables of the form Q ∝ q/t2 (here E0(k) ∝ k−2).
We can check in [34] that N(Q), given in (83) as the shock mass function, also describes
the probability distribution PX(Q) through PX(Q) ∼ XN(Q) on small scales, as explained
above in (79). Note that this remains valid even though shocks are no longer isolated but
dense in Eulerian space. Indeed, if we select shocks above a small finite mass threshold m∗,
the latter are again isolated so that the previous arguments apply, and smaller shocks only
modify the low-q tail of the distribution. Indeed, the previous arguments hold for the limit
x → 0 at fixed q , or more precisely above a cutoff q−(x) that goes to zero faster than x, so
that the scalings 〈qν〉 ∝ x for ν ≥ 1 do not depend on the behavior of the distribution px(q)

over this low-q domain. Thus, the functions n(q) and �(s) do not necessarily describe
the actual distribution px(q) down to q = 0 for a finite x. As seen above, for the case of
white-noise initial velocity, the scaling function F0(Q) of (30)–(31) actually applies down
to Q = 0+, as it only misses the Dirac contribution (108) (and the very high-Q tail (23)
which is repelled to infinity). However, for the case of Brownian initial velocity for instance,
the scaling functions (83) only apply to Q � X2 and they miss a low-Q cutoff of the form
e−X2/Q [34].

7.2 General 1-D Case for the Distribution of Overdensities on Small Scales

As seen in Sect. 5.1, since the overdensity η is also given by the ratio η = q/x, its probability
distribution is related to the distribution of the Lagrangian increment q through px(η) =
xpx(q). Then, from (79)–(82) we have

x → 0, η > 0: px(η) ∼ x2 n(xη) = x2
∫ +i∞

−i∞

ds

2π i
esxη �(s). (84)

If we define the cumulant ratios Sn and their generating function ϕx(y) as in (48)–(49),

Sn(x) = 〈ηn〉c
〈η2〉n−1

c

and ϕx(y) =
∞∑

n=1

(−1)n−1 Sn(x)
yn

n! , (85)

using the property that in the small-scale limit, x → 0, we have for n ≥ 1 the asymptotic
relationships 〈ηn〉c ∼ 〈qn〉/xn, we obtain

x → 0: ϕx(y) ∼ ϕ̄(y) with ϕ̄(y) = −�
′′
(0) �

(
y

�
′′
(0)

)
, (86)
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and

x → 0: px(η) ∼ −
∫ +i∞

−i∞

dy

2π i〈η2〉c eyη/〈η2〉c ϕ̄(y) with 〈η2〉c = �
′′
(0)

x
. (87)

We can check that this agrees with (49) for the white-noise initial velocity studied in this
article. For the case of Brownian initial velocity [34], we have, in agreement with (83),

X → 0: PX(η) ∼
√

X

π
η−3/2 e−Xη and ϕ̄(y) = √

1 + 2y − 1,

for Brownian initial velocity, (88)

where X ∝ x/t2 is again the scaling variable relevant to that initial condition. For the Brown-
ian case it happens that the expression (88) for the density cumulant generating function is
actually exact for all scales, but in the general case, as discussed below (83), it only applies
to the small scale limit at fixed density contrast. More precisely, although F0 describes the
overdensity probability distribution down to η → 0+ through (46) in the case of white-noise
initial velocity, in the general case it only applies above a cutoff η−(x) that decreases with x

(for instance for the Brownian initial velocity we have η−(x) ∝ x).

7.3 Multifractal Formalism in D Dimensions

These properties can be extended to higher dimensions D through a heuristic multifractal
formalism [4, 13, 31], without going through the inverse Lagrangian map x �→ q. Thus, let
us assume that the overdensity within a spherical cell of radius � centered on x scales for
� → 0 as η�(x) ∼ �α for points x ∈ Dα ⊂ R

D, with dimDα = F(α). Then, we may write

� → 0, ν > 0: 〈ην
� 〉 =

∫ ∞

0
dη ηνp�(η) ∼

∫
dα �να+D−F(α)p∗(α), (89)

where p∗(α) gives the weight of the various multifractal exponents, and we used the fact
that the probability for a sphere of radius � to encounter an object of dimension F scales as
�D−F for � → 0. Using a steepest-descent argument, we obtain the small-scale exponents γν ,

� → 0: 〈ην
� 〉 ∼ �−γν with γν = −min

α
[να + D − F(α)] = max

α
[F(α) − να − D]. (90)

Thus, the exponents γν and F(α) are related by a Legendre transform. The fractal scaling
exponent αν that is associated to γν through (90) is the abscissa of the first-contact point of
the curve F(α) with the family of straight lines, να + c, moving downward from c = +∞,
in a fashion similar to the geometrical construction associated with (3). In particular, the
exponents γν only probe the concave hull of F(α) [13]. Since the matter density is positive
the scaling exponents αν are restricted to α ≥ −D. This lower bound corresponds to Dirac
density peaks (i.e. massive points), which have a zero dimension, F(−D) = 0. On the other
hand, the constraint associated with the conservation of matter, 〈η�〉 = 1 whence γ1 = 0,
ensures that the curve F(α) is below the straight line α + D, which runs through the point
{−D,0}, and has at least one contact point with this line. Then, we can see that, as soon as
isolated Dirac density peaks have formed, with a finite probability per unit volume, the first-
contact point between F(α) and the family of straight lines να + c with ν ≥ 1 is the point
{−D,0} (for ν = 1 there can be other additional contact points), which gives γν = (ν − 1)D

for ν ≥ 1. For instance, in three dimensions D = 3, we generically expect to first form
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“Zeldovich pancakes” [37], that is sheets with a finite surface density, that intersect to form
filaments (i.e. lines of finite line density), which join to form point-like masses (nodes). This
corresponds to objects of fractal exponents and dimensions {−1,2}, {−2,1}, and {−3,0},
along the line {α,F = α + D}, that all contribute to γ1 = 0 while only point-like masses
contribute to γν = 3(ν − 1) for ν > 1. Then, we obtain

n ≥ 1: 〈ηn〉 ∼ �−(n−1)D whence 〈ηn〉c ∼ �−(n−1)D, Sn(�) ∼ �0 and ϕ�(y) ∼ ϕ̄(y)

for � → 0, (91)

where the limiting generating function ϕ̄(y), reached in the small-scale limit, no longer
depends on �. Thus, for stochastic initial conditions, where we generically expect the for-
mation of isolated Dirac density peaks in finite numbers per unit volume, we obtain the
scaling (91) and the first expression in (87) for the density probability distribution, where
in dimension D we have 〈η2〉c ∼ �−D . As explained above, within this heuristic multifractal
formalism the property (91) holds independently of the form of the fractal spectrum F(α)

over α > −D, as soon as there is a finite density of point-like masses which gives rise to the
fractal exponent {α = −D,F = 0}. The computation of the complete spectrum of fractal di-
mensions, that is necessary for the study of exponents ν < 1 in (89), is a difficult task and in
the general case there can be a continuous rather than discrete spectrum (as discussed below
in a phenomenological fashion for the case of Brownian initial velocity, where shocks are
dense).

Again, the scaling function ϕ̄(y) and the distribution it defines through (87) only apply
above a density threshold η−(�) that may only show a very slow decrease with �. Within
the multifractal formalism (89) the behavior at small densities, below this threshold η−(�),
depends on the properties of the curve F(α) to the right of the point {−D,0}, see [4, 31].
For the one-dimensional case with white-noise initial velocity studied in this article, since
shocks form isolated density peaks amid empty space, the curve F(α) is reduced to the
single point {−1,0} so that the scalings 〈ην〉 ∼ X1−ν apply to all ν > 0, in agreement with
the second relation in (46) and the fact that the distribution PX(η) ∼ X2 F0(Xη) in (46)
applies downto η = 0+, as seen in the previous sections.

For the one-dimensional case with Brownian initial velocity, we have the bifractality
〈qν〉 ∼ x for ν ≥ 1/2 and 〈qν〉 ∼ x2ν for ν ≤ 1/2 [1, 34]. This leads to 〈ην〉 ∼ x1−ν for
ν ≥ 1/2 and 〈ην〉 ∼ xν for ν ≤ 1/2. In terms of the multifractal formalism, this would be
interpreted as a second point {1,1}. This may be understood as follows. For these initial
conditions, the shock mass function diverges at small masses as n(m) ∝ m−3/2 and shocks
are uncorrelated and dense in Eulerian space [6, 28, 29, 34]. Then, choosing a small finite
mass threshold m∗, the set of shocks of mass larger than m∗ gives a population of isolated
point-like masses that gives rise to the fractal exponent {−1,0}. On the other hand, if we
choose a random Eulerian interval of size �, it contains in the mean m−1/2� shocks of mass
in the range [m,2m]. Taking m ∼ �β we obtain that (i) for any β > 2 an interval of size �

contains of the order of �1−β/2 shocks of mass in [m,2m], which leads to an overdensity
larger than η� ∼ �β/2, and (ii) for any β < 2 an interval of size � contains with a probability
of order �1−β/2 at least one shock of mass in the range [m,2m], which leads to an overdensity
larger than η� ∼ �β−1. The first point (i) leads to the multifractal point {1,1}, and the second
point (ii) leads to the points {β − 1, β/2} for 0 < β < 2, that is to the segment joining
the points {−1,0} and {1,1}. Therefore, we obtain in this case the multifractal spectrum
F(α) = α/2 + 1/2 with −1 ≤ α ≤ 1, see also [1] for more rigorous discussions. More
generally, in one dimension the scalings obtained for ν < 1 and the low-density tail are
related to the low-mass tail of the shock mass function.
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We can note that the small-scale limit of finite ratios Sn and generating function ϕx(y),
as in (86), also corresponds to the “stable-clustering ansatz” introduced in the cosmological
context as a phenomenological model for the highly nonlinear regime [27]. There, it was
derived by assuming that on small physical scales, after nonlinear collapse and gravitational
relaxation, overdensities decouple from the Hubble expansion and keep a constant physical
size [10]. It can also be associated with a multifractal formalism, where the moments of the
density with ν ≥ 1 would be governed by a single fractal exponent as in (91), which however
would not be associated with point-like masses but with structures of exponent α ∼ 1.3
and dimension F = 3 − α ∼ 1.2 [4, 31]. However, contrary to the Burgers dynamics, this
behavior may not be exactly reached on small scales for the gravitational dynamics, as the
coefficients Sn still appear to show a weak dependence with scale [9]. On the other hand, the
Burgers dynamics itself is also known as the “adhesion model” in this cosmological context
[17, 35], where it provides a good description of the large-scale filamentary structure of the
cosmic web [23]. It is not clear whether the reasonably good match of the “stable-clustering
ansatz” could be understood from the exact scaling (91) achieved in the small-scale limit
by the “adhesion model”, since the nonlinear structures are different (point-like masses as
opposed to extended halos) and no detailed comparisons have been performed yet in terms
of the ratios Sn themselves.

8 Conclusion

We have obtained in this article some equal-time properties of the Burgers dynamics, in the
inviscid limit for white-noise initial velocity. In agreement with previous works, the initially
singular distributions are regularized as soon as t > 0, but little power is transfered to large
scales. Thus, the distributions of the fluctuations of the Lagrangian increment, q , and of the
velocity increment, v, around their means, have a finite limit in the large-scale limit x → 0.
We recover the characteristic cubic exponential tails associated with white-noise initial con-
ditions. Voids lead to an additional Dirac-type contribution to these distributions, that also
decays as a cubic exponential at large scales and is preceded by an inverse square root tail
with a weight of the same order. On small scales, where the probability to be within a void
goes to unity, the regular part factorizes as X F0(Q), which corresponds to the probability to
contain one shock of strength Q. In particular, the scaling function F0(Q) is also the mass
function of shocks. This leads to the standard linear scaling with x of the velocity structure
functions at small scale, due to shocks.

Next, we have derived the distribution of the density within intervals of size x. It presents
similar properties to those obtained for the Lagrangian increment, and exhibits the corre-
sponding large-scale and small-scale scalings. In particular, at small scales this gives rise to
the scaling hierarchy for the density cumulants known as the “stable-clustering ansatz” in
cosmology. Here it is due to the presence of shocks. We also obtain the density two-point
correlation and power spectrum, with the high-wavenumber constant asymptote associated
with shocks.

Turning to the Lagrangian displacement field, associated with a description of the dynam-
ics in terms of Lagrangian coordinates, we have obtained the distribution of the Eulerian
increment x for a given mass ρ0q . On large scales the Lagrangian distribution pq(x) be-
comes identical, at leading order, to the Eulerian distribution px(q). On small scales there
is also a factorization of the form Q G0(X), but this is less general than for the small-scale
Eulerian distribution since it only applies to initial conditions such that shocks are isolated,
that is initial energy spectra with −1 < n < 1, whereas the Eulerian factorization remains
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valid for the whole range −3 < n < 1. Contrary to the Eulerian distribution, the Lagrangian
distribution pq(x) does not show divergent tails as it remains finite for x → 0, but there is
again an additional Dirac contribution, which is now due to shocks.

Finally, within a heuristic approach we have discussed how these small-scale properties
generalize to other initial conditions and give rise to a universal scaling for the distribution
of the Lagrangian increment (and of the velocity increment) above a lower cutoff q−(x), that
goes to zero faster than x in a fashion that depends on the initial conditions. A heuristic mul-
tifractal formalism allows to extend these results to higher dimensions. It generically leads
to a universal scaling hierarchy for the density cumulants in the small-scale limit, that is
governed by point-like masses. This also corresponds to the “stable-clustering ansatz” intro-
duced in the cosmological context, where the Burgers dynamics is known as the “adhesion
model” and is used to describe the large-scale cosmic web.

The results obtained in this article may prove useful to test approximation schemes de-
vised to handle other initial conditions or closely related dynamics, such as Navier-Stokes
turbulence or gravitational dynamics, where no exact results are available, as in [11, 32, 33].
In this respect, the case of white-noise initial velocity studied here would present a severe
test for nonperturbative methods. Indeed, the initial energy spectrum is so “blue” that non-
linear effects are dominant up to the largest scales, x → ∞, and perturbative expansions
already encounter ultraviolet divergences at leading orders. This implies that alternative ap-
proaches must be able to take into account shocks, as for the steepest-descent methods pre-
sented in [33]. Another interesting feature of the case of white-noise initial velocity studied
in this article is that it shows a density power spectrum that displays two different large-scale
and small-scale regimes, as for the gravitational dynamics in the cosmological context, but
can still be computed exactly.

Appendix A: Transition Kernel with Parabolic Absorbing Barrier

For the white-noise initial conditions (5), the process q �→ ψ0 is Markovian and a key quan-
tity is the conditional probability density Kx,c(q1,ψ1;q2,ψ2) for the Markov process ψ0(q),
starting from ψ1 at q1, to end at ψ2 at q2 ≥ q1, while staying above the parabolic barrier,
ψ0(q) > Px,c(q), for q1 ≤ q ≤ q2. We briefly recall here its derivation, obtained in [12],
using our notations. It obeys the diffusion equation

q2 ≥ q1: ∂

∂q2
Kx,c(q1,ψ1;q2,ψ2) = D

2

∂2

∂ψ2
2

Kx,c(q1,ψ1;q2,ψ2) (92)

over the domain ψ ≥ Px,c(q), with the initial condition at q2 = q1, Kx,c(q1,ψ1;q1,ψ2) =
δ(ψ2 − ψ1), and the boundary conditions, Kx,c(q1,ψ1;q2,ψ2) = 0 for ψ1 = Px,c(q1) or
ψ2 = Px,c(q2). The kernel associated with the propagation towards the left side, q2 ≤ q1, is
obtained from the parity symmetry

q2 ≤ q1: Kx,c(−q1,ψ1;−q2,ψ2) = K−x,c(q1,ψ1;q2,ψ2). (93)

In terms of the dimensionless coordinates (8) the kernel Kx,c can be written as

Kx,c(q1,ψ1;q2,ψ2)dψ2 = e(Q2−X)r2−(Q1−X)r1−(Q2−X)3/3+(Q1−X)3/3 G(τ ; r1, r2)dr2, (94)

where we defined

τ = Q2 − Q1, ri = 2

[
�i + (Qi − X)2

2
− C

]
, (95)
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and the propagator G obeys the Schrodinger-like equation

∂G

∂τ
= −r2 G + ∂2G

∂r2
2

over τ ≥ 0, r ≥ 0, (96)

with the initial condition G(0; r1, r2) = δ(r2 −r1) and the boundary conditions G(τ ; r1, r2) =
0 for r1 = 0 or r2 = 0. This reduced propagator G can be solved as [12, 15]

G(τ ; r1, r2) =
∞∑

k=1

e−ωkτ Ai(r1 − ωk)Ai(r2 − ωk)

Ai ′(−ωk)2
, (97)

where −ωk are the zeros of the Airy function Ai(x) (in particular, ω1 � 2.338). Thus,
G(τ ; r1, r2) is symmetric over {r1, r2}, and it also obeys the backward equation (compare
with (96))

∂G

∂τ
= −r1 G + ∂2G

∂r2
1

over τ ≥ 0, r ≥ 0. (98)

Next, it is convenient to introduce the probability density, Ex,c(q1,ψ1;q2,ψ2;q)dqdcdψ2,
for the curve ψ0(q), starting from ψ1 at q1, to end at ψ2 at q2 ≥ q1, while staying above
the parabolic barrier Px,c , and with a last excursion below Px,c+dc in the range [q, q + dq].
From the definition of the kernel Kx,c, it reads as

Ex,c(q1,ψ1;q2,ψ2;q) = ∂

∂q
lim
δc→0

1

δc

∫
dψ[Kx,c(q1,ψ1;q,ψ)

− Kx,c+δc(q1,ψ1;q,ψ)]Kx,c(q,ψ;q2,ψ2). (99)

Using a Taylor expansion and integrations by parts, this yields [12]

Ex,c(q1,ψ1;q2,ψ2;q) = D

2

∂Kx,c

∂ψ2
(q1,ψ1;q,ψ)

∂Kx,c

∂ψ1
(q,ψ;q2,ψ2)

∣∣∣∣
ψ=Px,c(q)

, (100)

which gives in terms of the reduced propagator G introduced in (94)

Ex,c(q1,ψ1;q2,ψ2;q) = 8Dt4

γ 8
e(Q2−X)r2−(Q1−X)r1−(Q2−X)3/3+(Q1−X)3/3

× ∂G

∂r2
(Q − Q1; r1,0)

∂G

∂r1
(Q2 − Q;0, r2). (101)

As could be expected, the expression (101) shows that the probability density Ex,c depends
on the behavior of the propagator G close to the boundary r = 0 at one end. This corresponds
to the contact point of abscissa q between the curve ψ0 and the parabola Px,c that is involved
in the definition of Ex,c.

Appendix B: Eulerian Distributions

B.1 One-Point Distributions px(q) and px(v)

Substituting (101) and (97) into (10), one obtains in terms of the dimensionless variables (8),

PX(Q) = J (X − Q) J (Q − X) and P (V ) = J (V )J (−V ), (102)
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where we used the relation X = Q + V , with [12]

J (u) = lim
τ→∞

∫ ∞

0
dr e−(τ−u)3/3+(τ−u)r

∞∑
k=1

e−ωkτ Ai(r − ωk)

Ai ′(−ωk)
=

∫ +i∞

−i∞

ds

2π i

esu

Ai(s)
. (103)

From the asymptotic behaviors of the function J (u),

u → +∞: J (u) ∼ e−ω1u

Ai ′(−ω1)
, and for u → −∞: J (u) ∼ −2ueu3/3, (104)

one obtains the asymptotic behavior (11) of the distribution of the velocity V (and of the
Lagrangian coordinate Q = X − V ) [12].

B.2 Two-Point Distributions px1,x2(q1, q2) and px1,x2(v1, v2)

We first consider the case (i) of Sect. 3.2, when the two first-contact parabolas Px1,c1 and
Px2,c2 have two different contact points q1 and q2 with the curve ψ0(q) (and there is at least
one shock in the interval [x1, x2] since the map x �→ q is constant outside of shocks [12,
28]). Then, noting q∗ the abscissa of the intersection between both parabolas, in a fashion
similar to (10) we can write this contribution to px1,x2(q1, q2) as

p �=
x1,x2

(q1, q2) = lim
q±→±∞

∫
dc1 dc2 dψ∗ dψ+ Ex1,c1(q−,0;q∗,ψ∗;q1)

× Ex2,c2(q∗,ψ∗;q+,ψ+;q2). (105)

Substituting the expression (101) of the kernel Ex,c gives, in agreement with [12], the ex-
pression (12), where we introduced the function H defined by

HX1,X2(Q1,Q2) = 2(X2 − X1)

∫ ∞

0
dr∗

∫ Q2

Q1

dQ∗ e(X2−X1)r∗−(Q∗−X1)3/3+(Q∗−X2)3/3

× ∂G

∂r1
(Q∗ − Q1;0, r∗)

∂G

∂r2
(Q2 − Q∗; r∗,0). (106)

We can check that the function HX1,X2(Q1,Q2), whence the distribution P
�=
X1,X2

(Q1,Q2),
are invariant with respect to uniform translations of Xi and Qi , in agreement with the statis-
tical homogeneity of the system.

We now consider the second case (ii) of Sect. 3.2, when the two parabolas intersect at the
common point q1 = q2, and we can write this contribution to px1,x2(q1, q2) as

p=
x1,x2

(q1, q2) = δ(q2 − q1) lim
q±→±∞ lim

q∗→q+
1

∫
dc1 dψ∗ dψ+ Ex1,c1(q−,0;q∗,ψ∗;q1)

× Kx2,c2(q∗,ψ∗;q+,ψ+). (107)

This gives in terms of dimensionless variables [12] the expression (13).

B.3 Probability P 0
X of Empty Intervals of Size X

Using (103), we can write the second term in (17) as [12]

P =
X (Q) = δ(Q)P 0

X with P 0
X =

√
π

X
e−X3/12

∫ +i∞

−i∞

ds1 ds2

(2π i)2

e(s1+s2)X/2+(s1−s2)2/(4X)

Ai(s1)Ai(s2)
. (108)
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Fig. 12 (Color online) Left panel: The probability P 0
X

that an Eulerian interval of size X is empty, that is,
that the Lagrangian increment Q over this interval is zero, from (108). The dashed line is the asymptotic
behavior (109). Right panel: Same as left panel but on a logarithmic scale

This yields for the probability P 0
X to have a vanishing Lagrangian increment the asymptotic

behaviors

X → 0: P 0
X → 1, and for X → ∞: P 0

X ∼
√

π

Ai ′(−ω1)2
X−1/2 e−ω1X−X3/12. (109)

Since Eulerian intervals with Q = 0 have a zero matter content, P 0
X is also the probability

for an interval of size X to be empty, in agreement with the result obtained in [12] for
this void probability. We compare this probability P 0

X with its asymptotic behavior (109)
in Fig. 12, see also [12]. The cubic exponential tail (109) may be understood using the
same arguments as those used for the tail of the velocity distribution (11) discussed above.
Thus, for the Eulerian interval of size x to be empty, its initial matter content must have
traveled by a distance of order x, which requires a mean velocity over this interval of order
v ∼ x/t . Again, since the initial Gaussian velocity over scale x is v̄0(x) = (ψ2 − ψ1)/x,

with a variance σ 2
v̄0

(x) = D/x, this yields the probability ∼ e
−(x/t)2/σ 2

v̄0
(x) ∼ e−x3/(Dt2), which

gives back the cubic exponential tail (109).

Appendix C: Laplace Transform of the Product of Two Airy Functions

We recall here the results obtained by [12] for the integral over two Airy functions that
appears in (18). Thus, if we define f (r) and g(x) by

f (r) = Ai(r + s1)Ai(r + s2), g(x) =
∫ ∞

0
dr exr f (r), (110)

the Laplace transform g(x) can be integrated as

g(x) = 1

2
√

π
e�s1,s2 (x) − e�s1,s2 (x)

∫ ∞

x

dy e−�s1,s2 (y)hs1,s2(y), (111)

with

�s1,s2(x) = x3

12
− s1 + s2

2
x − 1

2
lnx − (s1 − s2)

2

4x
, (112)



Some Statistical Properties of the Burgers Equation with White-Noise 763

and

hs1,s2(x) = f (0)

4
x − f ′(0)

4
+ f ′′(0) − 2(s1 + s2)f (0)

4x

− f (3)(0) − 2(s1 + s2)f
′(0) − 2f (0)

4x2
. (113)

The first term in the right hand side of (111) gives the large-x behavior of g(x), up to terms
of relative order e−x3/12.
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